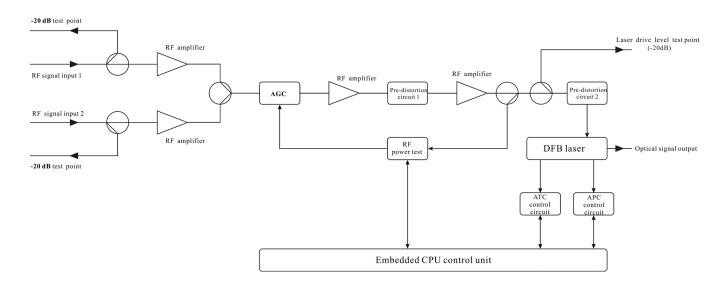
1310nm Directly Modulated Optical Transmitter


1. Product Overview

The 1310 downstream optical transmitter supports 860/1003/1218Mhz band and the DOCSIS 3.1 standard. The output optical power is from +6 dBm to +15 dBm available. It can be used for optical fiber transmission of downstream analog TV signals, digital television signals and CMTS data signals in HFC network. Two-way input signals with high-isolation for a variety of broadcast and insertion applications. It has patented pre-distortion circuit, high CNR and low distortion.

2. Performance Characteristics

- ➤ Support 870/1003/1218Mhz band and the DOCSIS 3.1 standard.
- > AGC and MGC gain control modes are optional.
- > DFB coaxial or butterfly-typed laser is available.
- Output optical power is from +6dBm to +15dBm optional.
- > Patent pre-distortion technology, good CNR, CSO, and CTB indicators are high.
- > Two inputs with isolation up to 50dB.
- Dual power supply hot backup, a variety of power feed options; AC100-240V and DC48V are optional.
- > LED status indication in the front panel.
- Laser output power, bias current and cooling current are detected in real time.

3. Block Diagram

4. Technique Parameters

Item	Unit	Parameter			
Optical Part					
Output optical wavelength	nm	1310 ± 20			
Output optical power	mW	4 \sim 31 (+6dBm \sim +15dBm)			
Laser type	_	DFB laser			
Optical modulation mode	_	Direct optical intensity modulation			
Optical connector type	_	SC/APC or FC/APC			
Optical return loss	dB	> 45			
RF Part					
Frequency range	MHz	47 ~ 870/1003/1218			
Flatness in band	dB	± 0.75			
RF input impedance	-	-20±1			
Input test port	-	-20±1			
Laser drive level test port	dB	≥ 16			
Input return loss	dB				
C/N	dB	≥ 52 550MHZ 59CH analog signal 77dBuV/CH			
C/CTB	dB	≥ 67 550-870MHZ 40CH digital signal 67dBuV/CH			
C/CSO	dB	≥ 62 -1dBm optical receiving power. 0KM fiber			
RF input level	dBuV	80±5			
Adjusting range under AGC mode	dB	± 5			
MGC attenuation range	dB	0 ~ 15			
Others					
Operating temperature		-5 ∼ +45			
Storage temperature	$^{\circ}$ C	-20 ~ +65			
Maximum power consumption	W	≤15			
Weight	Kg	5.5			

5. Operation instructions of the display menu

▲▼ key: The cursor can be moved left or right or up and down, and the selected module or menu is highlighted.

Enter key: Press **Enter** to enter the next submenu or set the parameters in the submenu. Press **Enter** to confirm.

ESC key: Exit or return to the previous menu.

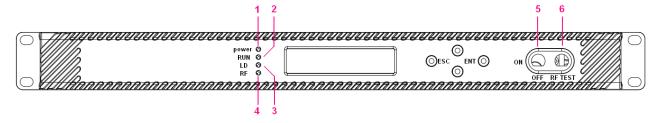
The menu displayed after power on: Press **Enter** to enter the first level submenu:

Disp Parameters, the second level submenu:

Laser Output	xx dBm
Laser Bias	xx mA
Laser Temp	xx ℃
Tec Cooling	xx A
RF Channel Nunber	xx
Laser RF	xx dBuV
RF Control Mode	AGC
AGC Ref	x dB
MGC ATT	x dB
+5V Read	χv
-5V Read	χv
+24V Read	χv
Wave Length	1310
S/N	
BOX Temperature	хх °С
IP Address	
Subnet Mask	
Net Gateway	
Mac	
SoftWare Version	

Laser output optical power
Laser bias current
Internal temperature of the laser
Laser cooling current
Transmission channel numbers
Laser drive level
RF control mode
AGC offset (in AGC mode)
MGC attenuation (in MGC mode)
+5V monitoring voltage
-5V monitoring voltage
+24V monitoring voltage
Equipment wavelength
Serial number
Current internal temperature
Equipment IP address
Equipment subnet mask
Equipment gateway
Equipment MAC address
Equipment software version number

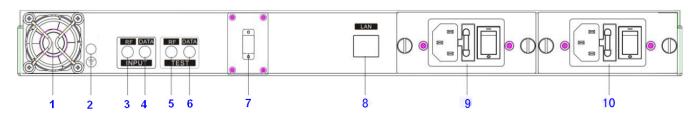
Set Parameters, the second level submenu:


SetLaserOutputUnit	dBm
Set BuzzerAlarm	ON
SetChannel Number	XX
SetRF ControlMode	AGC
Set AGC Ref	XX dB
Set MGC ATT	XX dB
Set IP Addr	
Set Subnet Mask	
Set GateWay	
Restore Factory Config	

Optical power unit: dBm, mW optional
Buzzer alarm: ON, OFF optional
Number of channels: 0-100 optional
RF control mode: AGC, MGC optional
AGC offset: ±5dB optional
MGC attenuation: 0-15 optional
Set the equipment IP address
Set the subnet mask
Set the gateway
Reset to the default

Alarm Status, the second level submenu:

,		
Laser RF	Laser level alarm: The default normal range is 80~110dBuV, which can be set through the network management.	
Laser Temp	Laser temperature alarm: The default normal range is 25±10°C, which can be set through the network management.	
Laser Bias	Laser bias current alarm: The default normal range is 20~90mA, which can be set through the network management.	
Laser Output	Output optical power alarm: The default normal range is 2 to 25 mW, which can be set through the network management	
Laser TEC	Laser cooling current: The default normal range is -1.5~1.5A, which can be set through the network management.	
+5V Alarm	+5V alarm: The default normal range is 5±1V, which can be set through the network management.	
-5V Alarm	-5V alarm: The default normal range is -5±1V, which can be set through the network management.	
+24V Alarm	+24V alarm: The default normal range is 24±2V, which can be set through the network management.	


6. Structure Description

Front panel

1	Power indicator	
2	Device running indicator: This indicator will flash by 1Hz frequency after the device start	
	running normally.	
	Laser working status indicator:	
	Steady green light: The laser is operating normally.	
3	Steady red light: The laser is not turned on.	
	Blinking red light: The device has a parameter alarm. You can view the alarm in the Alarm	
	Status, the second level submenu.	
	Laser drive level indicator:	
4	Steady green light: Drive level is normal.	
4	Blinking red light: Drive level alarm. You can view the alarm in the Alarm Status, the second	
	level submenu.	
-	Laser switch:	
5	ON: The laser is on.	

	OFF: The laser is off.
	Keep the laser off before the device is powered on, and turn on the laser after the
	self-inspection is completed when power on.
6	Laser drive level test port: -20dB

Rear panel

1	Fan	7	Optical signal output
2	Ground stud, ensure good grounding before power on	8	LAN interface
3	RF input 1	9	Power module 1, hot swappable
4	RF input 2	10	Power module 2, hot swappable
5	RF input 1 test port -20dB		
6	RF input 2 test port -20dB		

7. Attention

- Insure the package is not defaced. If you think the equipment has been damaged, please don't electrify to avoid worse damage or do harm to the operator.
- \triangleright Before the equipment is power on, make sure the housing and the power socket is reliably grounded. The grounding resistance should be <4Ω, so as to effectively protect against surges and static electricity.
- Optical transmitter is professional equipment. Its installation and debugging must be operated by special technician. Read this manual carefully before operating to avoid damage to equipment caused by fault operation or accident harm to the operator.
- While the optical transmitter is working or debugged, there is an invisible laser beam from the optical output adapter on the front panel. Avoiding permanent harm to the body and eye, the optical output should not aim at the human body and people should not look directly at the optical output with the naked eye!

When the fiber connector is not in use, it should be put on the dust jacket to avoid dust pollution and keep the fiber tip clean.